

MIQC-S90-AP 2120271

Hilti North America Installation Technical Manual Technical Data MIQ System

Version 1.0 06.2017

Terms of common cooperation / Legal disclaimer

The product technical data published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products, values only apply to static loading conditions). Technical data applies to the component only — suitability and capacity of all other components must be checked separately by the responsible engineer (e.g., other assembly components, attachments, base materials, and building structures).

Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve optimum performance (e.g. avoid misuse, modification, overload, corrosion).

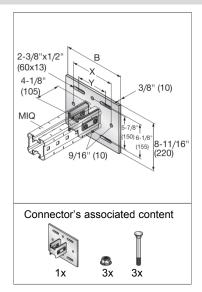
As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms, codes, and project specific requirements, prior to using them for any specific facility. This book only serves as an aid to interpret the capacity of the components listed, without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User's specific jurisdiction and project requirements.

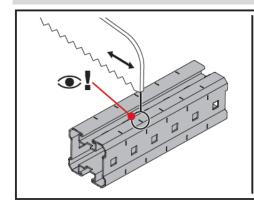
Designation Item number MIQC-S90-AP 2120271

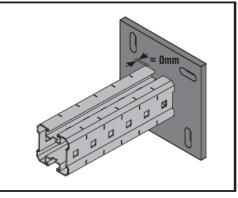
Corrosion protection:

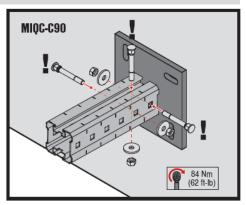
Hot dipped galvanized per DIN EN ISO 1461:

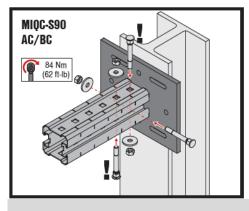

Connector: 2.2 mils (55 μ m) Bolt: 1.8 mils (45 μ m) Nut: 1.8 mils (45 μ m)

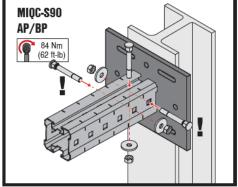
Weight:

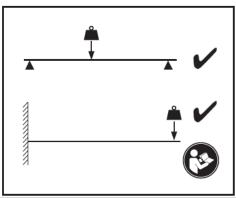

12.29 lb (5573g) incl. all components


Description:


Hilti base material connector, 90°, MIQ system, MIQC-S90-BC, Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section perpendicular to structural steel beam. The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12 (not in pack) beam clamps to flange (width 6.5 "(165mm) - 9.25"(235mm)) of I-beam or by boxing any structural steel profile (width 6.5 "(165mm) - 9.25"(235mm)) using Hilti backing plate MIQB-SB (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack) material weight 14.95 lb (6782 g) incl. all connectivity material.




Material properties				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:			.,	
S235JR - DIN EN10025-2 2005.4	$f_y = 34.08 \text{ ksi } (235 \frac{N}{mm^2})$	$f_u = 52.21 \text{ ksi } (360 \frac{N}{mm^2})$	29000 ksi (200000 $\frac{N}{mm^2}$)	11000 ksi (75845 $\frac{N}{mm^2}$)
Screw, prevail torque hex nut				
Class 8.8 - DIN EN 1993-1-8	$f_v = 92.82 \text{ ksi } (640 \frac{N}{mm^2})$	$f_u = 116.03 \text{ ksi } (800 \frac{N}{mm^2})$	29000 ksi (200000 $\frac{N}{mm^2}$)	11000 ksi (75845 $\frac{N}{mm^2}$)
	, mm	mm	mm	mm



Installation Technical Manual - Technical Data - MIQ system

Approved loading cases					
Clamped	Boxed				

Governing Conditions

Methodology:

Connection strength values are determined with a combination of simulation (ANSYS), calculation (Microsoft Excel and Mathcad) and testing.

Standards and codes:

ANSI/AISC 360-10 Specification for Structural Steel Buildings

ANSI/AISC 360-10— Inelastic analysis

Appendix 1

AISC Steel Design Column Base Plates

Guide Series 1

AISI S100 - 2007/2010 North American Specification for the Design of cold

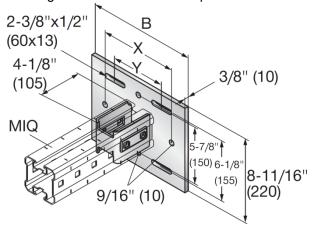
formed Steel Structural Members

EN 1993-1-1 Eurocode 3: Design of steel structures – Part 1-1: 03.2012

General rules and rules for buildings

EN 1993-1-8 Eurocode 3: Design of steel structures – Part 1-8: 03.2012

Design of joints


• EN 10025-2 Hot rolled products of structural steels-Part 2: technical 02.2005

delivery conditions for non-alloy structural steels

Validity:

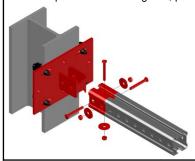
Temperature limits: -22°F (-30°C) to 200°F (+93°C).

Published allowable loads for applications are based on static loading conditions. Non-static forces, including those resulting from thermal or other expansion must be taken into account during design.

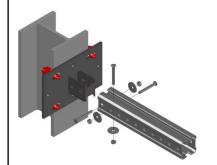
Clamped	Boxed	

Loading case: Clamped	Combinations covered by loading case
Bill of Material for this loading case: Connector with all packaged hardware 1x MIQC-S90-AP 2120271 Hardware not included in packaging: Beam clamps 4x MI-SGC M12 233859	Connector used for fixing MIQ girder, perpendicularly to flange (width 2.95" (75mm) -6.47" (165mm)) of structural steel open section, perpendicularly to structural steel beam

Usage of Values for Design Strength and Allowable Strength


The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

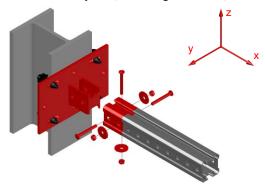
- 1. ASD: Safety Factor (omega) > 1.0 as per AISC specifications.
- 2. <u>LRFD:</u> Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{1.5}{\phi}$ (Reference AISC 360 C-B3-5)


Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

2. Beam clamps per analytical calculation


Clamped	Boxed	

Values for Design Strength and Allowable Strength

1/2

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
LRFD*	7.51	7.51	2.55	2.55	8.38	8.38
LKFD	+Mx	-Mx	+My	-My	+Mz	-Mz
	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]
	0.96	0.96	1.03	1.03	0.56	0.56

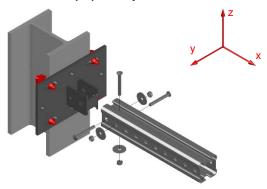
	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
A C D*	5.00	5.00	1.70	1.70	5.57	5.57
ASD*	+Mx	-Mx	+My	-My	+Mz	-Mz
	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]
	0.64	0.64	0.68	0.68	0.37	0.37

Interaction for LRFD

$$\frac{P_{ux}}{F_x} + \frac{V_{uv}}{F_y} + \frac{V_{uz}}{F_z} + \frac{M_{ux}}{M_x} + \frac{M_{uv}}{M_y} + \frac{M_{uz}}{M_z} \le 1$$
 Interaction for ASD:

$$\frac{P_{ax}}{F_x} + \frac{V_{av}}{F_y} + \frac{V_{az}}{F_z} + \frac{M_{ax}}{M_x} + \frac{M_{av}}{M_y} + \frac{M_{az}}{M_z} \le 1$$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

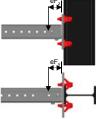

Clamped	Boxed	

Values for Design Strength and Allowable Strength

2/2

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Beam clamps per analytical calculation


	+Fx [kip]	-Fx [kip]	+Fy [kip]	-Fy [kip]	+Fz [kip]	-Fz [kip]
1 DED*	7.04	Not decisive	1.48	1.48	1.48	1.48
LRFD*	+Mx [kip*ft]	-Mx [kip*ft]	+My [kip*ft]	-My [kip*ft]	+Mz [kip*ft]	-Mz [kip*ft]
	0.38	0.38	1.39	1.39	0.91	0.91
	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
A CD*	[kip] 4.69	[kip] Not decisive	[kip] 0.99	[kip] 0.99	[kip] 0.99	[kip] 0.99
ASD*						
ASD*	4.69	Not decisive	0.99	0.99	0.99	0.99

Interaction for LRFD

Normal force interaction:

The eccentricity eF_y and eF_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{P_{ux}}{F_x} + \frac{V_{uy} * eFy}{M_z} + \frac{V_{uz} * eFz}{M_y} + \frac{M_{uy}}{M_y} + \frac{M_{uz}}{M_z} \le \frac{1}{2}$$

with $eF_y = 0.050$ mm $eF_z = 0.055$ mm

Shear force interaction:

$$\sqrt{\left(\frac{V_{uy}}{F_y \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2 + \left(\frac{V_{uz}}{F_z \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2 + \frac{M_{ux}}{M_x \times \left(1 - \frac{P_{ux}}{F_x}\right)}} \le 1$$

Interaction formula valid only for P_{ux} > 0

Interaction for ASD:

Normal force interaction:

The eccentricity eF_y and eF_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system, must be taken into account in the interaction formula

$$\frac{P_{ax}}{F_x} + \frac{V_{ay} * eFy}{M_z} + \frac{V_{az} * eFz}{M_y} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \le$$

with $eF_y = 0.055mm$ $eF_z = 0.050mm$

Shear force interaction:

$$\sqrt{\left(\frac{V_{ay}}{F_y \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 + \left(\frac{V_{az}}{F_z \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 + \frac{M_{ax}}{M_x \times \left(1 - \frac{P_{ax}}{F_x}\right)} \le 1}$$

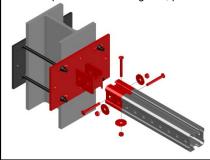
Interaction formula valid only for $P_{ax} > 0$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

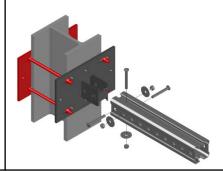
Clamped	Boxed	

Loading case: Boxed Combinations covered by loading case BOM: Connector used for fixing Connector with all packaged hardware MIQ girder, 1x MIQC-S90-AP perpendicularly to flange 2120271 (width 2.95" (75mm) -6.47" (165mm)) Hardware not included in packaging: Back (base) plate of structural steel open 1x MIQB-SB 2123566 section, perpendicularly Threaded rods to structural steel beam 4x AM12x1000 8.8 HDG...m 419103 Self-locking nut 8x M12-F-SL WS3/4 382897

Usage of Values for Design Strength and Allowable Strength


The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

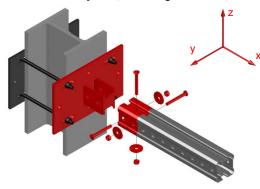
- 1. <u>ASD:</u> Safety Factor (omega) > 1.0 as per AISC specifications.
- 2. <u>LRFD:</u> Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{1.5}{b}$ (Reference AISC 360 C-B3-5)


Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M

Limiting components of capacity evaluated in following tables:

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

2. Base plate and through bolts - per analytical calculation


Clamped	Boxed	

Values for Design Strength and Allowable Strength

1/2

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MIQ-90 girder, per FEA simulation

	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
LRFD*	7.51	7.51	2.55	2.55	8.38	8.38
LKFD	+Mx [kip*ft]	-Mx [kip*ft]	+My [kip*ft]	-My [kip*ft]	+Mz [kip*ft]	-Mz [kip*ft]
	0.96	0.96	1.03	1.03	0.56	0.56
	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz

ASD*	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
	5.00	5.00	1.70	1.70	5.57	5.57
	+Mx	-Mx	+My	-My	+Mz	-Mz
	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]
	0.64	0.64	0.68	0.68	0.37	0.37

Interaction for LRFD

$$\frac{P_{ux}}{F_x} + \frac{V_{uv}}{F_y} + \frac{V_{uz}}{F_z} + \frac{M_{ux}}{M_x} + \frac{M_{uv}}{M_y} + \frac{M_{uz}}{M_z} \leq 1$$
 Interaction for ASD:

$$\frac{P_{ax}}{F_{x}} + \frac{V_{av}}{F_{y}} + \frac{V_{az}}{F_{z}} + \frac{M_{ax}}{M_{x}} + \frac{M_{av}}{M_{y}} + \frac{M_{az}}{M_{z}} \le 1$$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

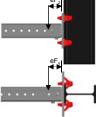
Clamped	Boxed	

Values for Design Strength and Allowable Strength

2/2

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Beam clamps per analytical calculation


LRFD*	' ' ' ' '	-I A	'i y	-ı y	'12	-1 Z
	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
	7.18	Not decisive	1.51	1.51	1.51	1.51
	+Mx	-Mx	+My	-My	+Mz	-Mz
	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]
	0.38	0.38	1.30	1.30	0.89	0.89
	LEV	Εv	, E.,	E.		F-
	+Fx	-Fx	+Fy	-Fy	+Fz	-Fz
ASD*	[kip]	[kip]	[kip]	[kip]	[kip]	[kip]
	4.79	Not decisive	1.01	1.01	1.01	1.01
	+Mx	-Mx	+My	-My	+Mz	-Mz
	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]	[kip*ft]
	0.26	0.26	0.87	0.87	0.59	0.59

Interaction for LRFD

Normal force interaction:

The eccentricity eF_y and eF_z between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the

$$\frac{P_{ux}}{F_x} + \frac{V_{uy} * eFy}{M_z} + \frac{V_{uz} * eFz}{M_y} + \frac{M_{uy}}{M_y} + \frac{M_{uz}}{M_z} \le 1$$

with $eF_v = 0.050$ mm $eF_z = 0.055$ mm

$$\sqrt{\left(\frac{V_{uy}}{F_y \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2 + \left(\frac{V_{uz}}{F_z \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2} + \frac{M_{ux}}{M_x \times \left(1 - \frac{P_{ux}}{F_x}\right)} \le 1$$

Interaction formula valid only for P_{iix} > 0

Interaction for ASD:

Normal force interaction:

The eccentricity ${\sf eF}_{\sf y}$ and ${\sf eF}_{\sf z}$ between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the

$$\frac{P_{ax}}{F_x} + \frac{V_{ay}*eFy}{M_z} + \frac{V_{az}*eFz}{M_y} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \le$$
Shear force interaction:

with $eF_y = 0.055mm$ $eF_z = 0.050mm$

$$\left| \left(\frac{V_{ay}}{F_y \times \left(1 - \frac{P_{ax}}{F_x} \right)} \right)^2 + \left(\frac{V_{az}}{F_z \times \left(1 - \frac{P_{ax}}{F_x} \right)} \right)^2 + \frac{M_{ax}}{M_x \times \left(1 - \frac{P_{ax}}{F_x} \right)} \le 1 \right|$$

Interaction formula valid only for Pox > 0

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

Data version 1.1 I Date 05.2017

In the US:

Hilti, Inc. (U.S.)

P.O. Box 21148 Tulsa, OK 74121 Customer Service: 1-800-879-8000

en español: 1-800-879-5000 Fax: 1-800-879-7000

www.us.hilti.com

Hilti is an equal opportunity employer Hilti is a registered trademark of Hilti, Corp. ©Copyright 2017 by Hilti, Inc. (U.S.)

In Canada:

Hilti (Canada) Corporation 2360 Meadowpine Blvd. Mississauga, Ontario, L5N 6S2 Customer Service: 1-800-363-4458

Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000 (U.S.) or 1-800-363-4458 (Canada). All published load values contained in this literature represent the result of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determinate performance at any specific site.